RV’04 Preliminary Version

Testing conformance of real-time applications
by automatic generation of observers

Saddek Bensalem, Marius Bozga, Moez Krichen, Stavros Tripakis

Verimag
Centre Equation, 2, avenue de Vignate, 38610 Giéres, France

Abstract

We propose a new methodology for automated testing of real-time applications
in general and robotic applications in particular. The starting point is a high-
level specification which can be automatically translated into a network of timed
automata. Analog or digital-clock observers are then generated from the timed
automata specification. The system under test (SUT) is instrumented to export
observable events and corresponding time-stamps. The traces generated by the
SUT are fed to the observer (on-the-fly or off-line). The latter checks whether
each trace conforms to the specification. The approach has been applied to the K9
Martian Rover executive of NASA.

Key words: Testing, Timed automata, Planning, Martian Rover

1 Introduction

Computer-aided verification of programs has been studied for decades by the
formal method research community. Different models and specification lan-
guages have been proposed to describe systems and express desired proper-
ties about them in a precise way. The expressivity and the applicability of
such models to various domains has been studied. It has been realized quite
early, however, that the approach suffers from two fundamental problems of in-
tractability. First, undecidability, because of Turing-machine expressiveness of
many infinite-state models. Second, intractability because of state-explosion,
that is, prohibitively large state spaces to be explored. A large effort then con-
centrated in tackling these problems, resulting in a number of significant ad-
vances. Powerful theorem-proving techniques, (semi-)automatic abstractions,
symbolic representations of state space, on-the-fly algorithms, compositional
and assume-guarantee methods, etc. Despite these, intractability remains a
major obstacle to the applicability of formal verification.

Another major obstacle is the fact that for a number of systems, a formal
model simply does not exist and is too difficult or costly to build.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

A complementary or alternative approach widely used in the industry to-
day is testing. Testing is less ambitious than verification, in the sense that
it only aims at finding bugs, and not at proving correctness. Indeed, most
test methods are not complete (i.e., the system cannot be guaranteed to be
correct even if it passes all tests). Nevertheless, confidence in the correctness
of the system increases as the number of successful tests increases [27]. This
feature of testing is particularly appealing to the industry, because it allows
engineers to decide how much effort to put in validation, in contrast to an
“all-or-nothing” verification approach.

Moreover, testing does not require a model of the system under test (SUT).
Most testing methods are “black box”, in the sense that the only knowledge
about the SUT is its interface to the outside world (set of inputs and outputs).
A model of the specification is necessary for automated test generation, how-
ever, this model is usually finite state and much smaller than a model of the
SUT. This, and the feature above, makes testing tractable.

In this paper, we propose a new methodology of dynamic testing for real-
time applications. It is dynamic in the sense that it makes use of instrumenta-
tion of the SUT and of run-time verification technology. The class of systems
we are targetting includes all systems where a specification exists and can be
translated into (or given directly as) a network of timed automata (TA) [2].
Many instances of such systems can be found in the domain of robotics. There,
a plan defines the steps to be performed to achieve a mission, and also gives
detailed information about order, timing, etc., of these steps. The plan is fed
as an input to an execution platform (the term includes software, middleware
and hardware) which must implement it, by performing the specified steps
in the specified timing and order. Thus, the plan can be taken to be the
specification and the platform executing this plan to be the SUT.

Our methodology is illustrated in Figure 1 and is described in detail in
Section 2. Let us briefly summarize it here. The starting point is a plan,
which is taken to be a high-level specification. This plan is automatically
translated into a TA model. From the latter an observer is automatically
synthesized. The observer is also a testing device, that is, it checks whether
a sequence of observations (with time-stamps) conforms to the specification.
The execution platform is instrumented, so that it can be interfaced with the
observer. This interface must essentially export observable events and time-
stamps for these events. The final step is the testing itself. It can be done: (1)
either on-the-fly, by running the plan on the instrumented execution platform
and feeding the observations to the observer; (2) or off-line, by generating a
set of “log-traces” from the execution platform, then feeding these traces to
the observer one by one.

The main advantage of our method is that it is potentially fully-automatic.
Plans can be automatically translated into networks of TA [1]. Observers for
TA can be generated automatically, as we show here. For the case study
reported in this paper, we relied on the help of Klaus Havelund and Rich

20

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

Washington at NASA, for the instrumentation of the execution platform and
the generation of the traces. However, it should be possible to automate this
part as well, in the general case, by identifying a mapping between platform
events and specification events, and automatically scanning the code, adding
event/time-stamp exporting commands to the identified platform events. Fi-
nally, the observation/testing process is automatic as well.

The rest of the paper is organized as follows. Section 2 presents the
methodology in detail. Section 3 gives a short review of the model of timed
automata. Section 4 describes plans and their translation to networks of TA.
Section 5 shows how observers can be generated automatically from TA. Sec-
tion 6 discusses the application of our method on the K9 Rover case study.
Section 7 contains conclusions and plans for future work.

Related work

[4] report work very much related to ours. Their scheme is also based on the
instrumentation of the SUT and the runtime analysis of the instrumented SUT
using an observer. The starting point of their method is a test-input generator,
which generates inputs to the instrumented SUT. These inputs are also fed to
a property generator, which generates properties that the SUT must satisfy
on these particular inputs. The properties and the execution traces are fed
to an observer, which checks whether the former are satisfied by the latter.
The test-input generator and the property generator are specifically written
for the application to be tested, while the instrumentation package and the
observer are generic tools used on different applications. In one of the two case
studies reported in [4], namely, the K9 rover controller, the inputs are plans
like the ones we use in this paper (see Section 6). The test-input generator
generates all possible plans up to given number of nodes and bounds on timing
constraints.

The differences between our work and the work of [4] are as follows:

e [4] include a test-input generator and an instrumentation package in their
tool-chain. Our work is still incomplete in these aspects. For the K9 rover
case study, we have relied on NASA personnel and tools for the input plans,
instrumentation and generation of traces.

¢ In [4], a set of untimed temporal logic properties are automatically generated

from each plan (recently, the work has been extended to real-time temporal-

logic [7]). As stated in [4], “property generation is the difficult step in [the]

process” and “[the] set of properties does not fully represent the semantics

of the plan, but the approach appearred to be sufficient to catch a large
amount of bugs”.

In our work, plans are translated into networks of timed automata. This is

a fully-automatic and efficient process, which captures the full semantics of

a plan [1]. Notice that, once generated, the TA corresponding to a plan can

be also used for other purposes than generating an observer. For instance, to

21

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

check whether the plan meets certain properties, measure delays of various
sub-stages, and so on.

 The observer tools used in [4,7] (DBRover [13], JPax [15,8], Eagle [6,5]), are
generic tools. In our work, we automatically generate an observer for each
plan. This has the potential of optimizing the observer for the particular
plan.

In conclusion, we believe that our work represents an alternative that is worth
pursuing.

2 Methodology

Our methodology is mainly focused at testing robotic applications, such as
the NASA K9 Rover (see Section 6). Such applications are often structured
in two layers. A high-level planning layer and a low-level ezecution layer. The
planning layer follows an input plan, which is a detailed description of the
steps needed to accomplish the mission at hand. The planning layer issues
commands to the execution layer, which tries to implement them and returns
the results, including status information about success or failure. The planning
layer then plans the next steps depending on this feedback and the instructions
in the plan.

automatic Plan r----- q
translation |
— v
TA Execution
model Platform
automta_tic instrumentation
eneration
& . EEE—
execution |Instrumented
Observer f------ ---1 Execution
observation/ | Platform
v testing —_
.yes/no
didgnostics

Fig. 1. Methodology

A number of planning languages for robotic applications exist, see, for
instance [20,17,18,24,22,21,14]. These languages allow to specify the ordering
of the steps, their timing, how to handle exceptions or failures, and so on.
Thus, they can be seen as the specification of the mission. A correct execution
platform must then meet this specification. Our objective is to check this by
testing. More precisely, our methodology is illustrated in Figure 1. It consists
of the following phases:

(i) Automatic generation of a timed-automaton specification from the plan.

(ii) Automatic generation of an observer from the timed-automaton specifi-
cation.

22

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

(iii) Instrumentation of the system under test, that is, the execution platform.

(iv) Execution and testing of the instrumented execution platform.

In the figure, solid arrows represent model and program transformations and
dashed arrows represent data flow (output/input). We elaborate on each of
the above phases in what follows.

The first step is to translate the plan in the form of a timed automaton,
or a network of timed automata (TA). The translation must preserve the
semantics of the plan, that is, the semantics of the TA and of the plan must
be equivalent. It may also be the case that the TA defines the semantics of
the plan in a formal way, as in [1] and this paper.

Having obtained the TA specification A, the next step consists in gener-
ating automatically an observer for A. The observer is a testing device. It
observes the system under test (SUT) and checks whether the trace generated
by the SUT conforms to A. The observed traces are sequences of observable
events and associated time-stamps. The accuracy of the time-stamps depends
on the accuracy of the clocks of the observer. In this paper, we consider two
types of observers (we follow the terminology of [16]). Analog observers, which
can observe real-time precisely, and digital (or periodic-sampling) observers,
which measure time with a clock ticking at a given period. Digital-clock ob-
servers are clearly more realistic to implement, since in practice the observer
will only have access to a finite-precision clock. However, analog-clock ob-
servers are still useful, for instance, when the implementation is discrete-time
but its time step is not known a-priori.

An observed trace conforms to A if it can possibly be generated by A.
Notice that A is typically modeled as a network of TA, which induces non-
determinism and internal communication between the automata. These are
artifacts of the model, irrelevant to the external behavior and to the speci-
fication itself. Thus, we “hide” them, by considering them as unobservable
events. This means that the observer checks if the observed trace is a possible
observation resulting from some trace of A.

The third step is the instrumentation of the execution platform. It aims at
interfacing the latter with the testing device (the observer). Two possibilities
exist here. Either testing is performed on-the-fly (or on-line), that is, during
execution of the platform, which is connected to the observer at real-time. Or
it is performed off-line, that is, by first executing the platform multiple times
to obtain a set of log-traces, then feeding these traces to the observer. In both
cases, the instrumented platform must be able to expose a set of observable
events to the observer. In the case of testing off-line, the platform must also
record the time-stamps of these events. For testing on-line, time-stamping
can be done by the platform or by the observer. In the latter case, possible
interfacing delays must be taken into account.

Instrumentation can be done manually or automatically. Depending on
the complexity of the SUT, it can be a non-trivial task. Care should be taken

23

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

so that the instrumentation does not itself alter the behavior of the system.
For instance, the overhead of added code should be minimal, so as not to affect
execution times of the tasks in the system. These are problems inherent in
any instrumentation process, and are beyond the scope of this paper.

The final step is the testing procedure per-se. The traces generated by the
instrumented platform are fed to the observer, either in real-time (for on-the-
fly testing) or off-line. The observer checks conformance of each trace. If a
trace is found non-conforming to the specification, the SUT is non-conforming.
Otherwise, no conclusion can be made. However, confidence to the correctness
of the SUT is increased with the number of tests. Obtaining a representative
set of tests, so that some coverage criterion is met is an issue in any testing
method (e.g., see [27]), and is beyond the scope of the present paper.

3 Preliminaries

Timed sequences, projections and digitizations
Let N be the set of non-negative integers. Let R be the set of non-negative
rational numbers.

Consider a finite set of actions ¥. RT(X) (resp., DT(X)) is defined to be
the set of all finite-length real-time sequences (resp., discrete-time sequences)
over X, that is, sequences of the form (aq,t1) -+ (an,t,), where n > 0, for all
1 <i<mn,a € ¥andt; € R (resp., t; € N), and for all 1 <7 < j < n,
t; <t;. € will denote the empty sequence. t; will be called the time-stamp of
a;. Notice that time-stamps are relative to the beginning of a sequence. Thus,
when concatenating sequences, they need to be adjusted. More precisely,
given p = (ay,t1) -+ (an,t,) and o = (by,t}) -+ (bm,t,,), p - o is the sequence
(ar,t1) - (ans tn) (b1, tn +17) - - (b, tn +t1,). The time spent in a sequence p,
denoted time(p), is the time-stamp of the last action (zero if the sequence is
empty). For example, time((a,0.1)(b,1.2)) = 1.2.

Given ¥ C ¥ and p € RT(X) (resp., DT(X)), the projection of p to 3,
denoted Ps/(p), is a sequence in RT(X') (resp., DT(X')), obtained by “erasing”
from p all pairs (a;,t;) such that a; ¢ ¥'. For example, if ¥ = {a, b}, ¥’ = {a}
and p = (a,0)(b,1)(a,3), then Ps/(p) = (a,0)(a,3). For a set of sequences
L CRT(S) (or L € DT(Y)), P, (L) = {Ps..(p) | p € L}

Consider § € R, § > 0, and p € RT(X). The digitization of p with respect
to 0, denoted [pls, is a sequence in DT(X), obtained by replacing every pair
(a;,t;) in p by (ay, L%J), where |z is the integral part of x. For example, if
p = (a,0.1)(b,0.9)(c, 1)(d,2.3), then [p]; = (a,0)(b,0)(c,1)(d,2) and [plos =
(a,0)(b,1)(c,2)(d,4). For a set of sequences L C RT(X), [L]s = {[p]s | p € L}.

Timed automata

We use timed automata (TA) [2] with deadlines to model urgency [23,9]. A
timed automaton over 3 (TA) is a tuple A = (Q, qo, X, 2, E) where @ is a finite
set of locations; qy € () is the initial location; X is a finite set of clocks; E is a

24

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

finite set of edges. Fach edge is a tuple (¢, ¢, v, r, d,a), where q,q" € @ are the
source and destination locations; ¢ is the guard, a conjunction of constraints of
the form x#c, where x € X, ¢ is an integer constant and # € {<, <, =, >, >};
r C X is the clock reset; d € {lazy, delayable, eager} is the deadline; and a € X
is the action. Intuitively, eager transitions must be executed as soon as they
are enabled and waiting is not allowed; [azy transitions do not impose any
restriction on time passing; finally, when a delayable transition is enabled,
waiting is allowed as long as time progress does not disable it. We will not
allow eager edges with guards of the form z > c.

A TA A defines an infinite labeled transition system (LTS). Its states are
pairs s = (g,v), where ¢ € @ and v : X — R is a clock valuation. 0 is
the valuation assigning 0 to every clock of A. S, is the set of all states and
s = (qo, 6) is the initial state. There are two types of transitions:

o discrete transitions of the form (q,v) %4 (¢',v'), where a € ¥ and there
is an edge (q,¢,%,r,d,a), such that v satisfies 1) and v’ is obtained by
resetting to zero all clocks in r and leaving the others unchanged;

e timed transitions of the form (g, v) A (qg,v+1t), where t € R;t > 0 and
there is no edge (q,q”,v,r, d,a), such that: either d = delayable and there
exist 0 < t; <ty <t such that v+¢; | ¢ and v+ o |~ 9; or d = eager and
v = .

We use notation such as s 4, s %4, ..., to denote that there exists s’
such that s —4 &, there is no such s, and so on. This notation extends to
sequences in RT(X): s 54 s and if s L s and & LAiA 5", then s p'(—ait)A s".

A state s € Sy is reachable if there exists p € RT(X) such that si* %4 s.
The set of reachable states of A is denoted Reach(A).

The set of traces of a TA A over X is defined to be
(1) Traces(A) = {p € RT(X) | s L4}

Let ¥,p5s € X be a set of observable actions. The actions in ¥\ ¥,5 are called
unobservable. The set of observed traces of A with respect to X, is defined
to be

(2) ObsTraces(A, ¥ ,p5) = Ps,,, (Traces(A)).

Given 6 € R, § > 0, the set of d-digital observed traces of a TA A is defined to
be

(3) DigTraces(A, X ps,0) = [ObsTraces(A, X ops)]s-

Notice that Traces(A) C RT(X), ObsTraces(A,¥.s) € RT(X,s) and
DigTraces(A, Xops,0) C DT (X0ps)-

4 Generating timed-automata from plans

In this section we describe how to obtain TA models from plans. We give the
construction for the concrete language of plans performed by the K9 Rover

25

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

Plan — Node
(block
Node — Block | Task .id node0
Block — (block :continue-on-failure
NodeAttr :start-condition ((1 5))

:end-condition ((1 30))
:node-list (
Task — (task (block

NodeAttr :id nodel
:continue-on-failure

:start-condition (1 5))
NodeAttr — :id Symbol (block

:start-condition Condition :id node2

:continue-on-failure
:start-condition (+1 +5)
:maintain-condition Condition :end-condition (+1 +30)

:node-list (Node ... Node))

:action Symbol)

:waitfor-condition Condition

:end-condition Condition)
[:continue-on-failure]

Condition — (time [+] StartTime [+] EndTime)

Fig. 2. The concrete grammar of plans (left) and a plan example (right).

executive, which is actually our case study (see section 6). Nevertheless, TA
models are general enough to capture most of the constraints expressed in
plan languages.

For the K9 Rover application, a plan is a hierarchical structure of actions
that the executive must perform. Traditionally, plans are deterministic se-
quences of actions. However, increased autonomy requires added flexibility.
The plan language therefore allows branching based on conditions that need
to be checked, and also for flexibility with respect to the starting time of an
action. We give here an example of a language used in the description of the
plans that the executive must execute.

Plan Syntax

A plan is a node, a node is either a task, corresponding to an action to be
executed, or a block, corresponding to a logical group of nodes. Figure 2
shows the grammar for the language that we considered to describe plans. All
node attributes except the node id are optional. Each node may specify a set
of conditions. The start condition (that must be true at the beginning of the
node execution), the wait-for conditions (wait while the condition is not true),
the maintain condition (that must be true through the execution of the node)
and the end condition (that must be true at the end of the node execution).
Each condition includes information about relative or absolute time window,
indicating a lower and upper bound on the time. The continue-on-failure flag
indicates what the behavior will be if a node failure is encountered.

26

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

We propose hereafter a compilation method allowing to obtain from a plan
(that is, a syntactic object) a network of timed automata (that is, a semantic
model) encoding all the accepted, reasonable executions of that plan.

For sake of simplificity, we consider the following abstract syntax for plans.

Definition 4.1 (plan syntax)
A plan P is a tuple (N, 9, A\, ng) where

N is a finite set of nodes

0: N — N* is the node decomposition function, defined such that the image
set relation 6 = {(n,n')|n' € 6(n)} satisfies

- acyclicity: ¥n € N. n & 5t ({n})

- disjointness: Yy, ns € N,y #no. 67 ({ni}) Nét({ny}) =0

e \: N — X xTI*x B is the node labeling function, where Y is a set of action
labels, T = {[l,u] | [,u € N} is the set of interval constraints, and B are the
booleans. That is, A(n) = (an, (Sp, Wy, My, €,), fn) where a, is the action
symbol, s, wy,, m,, e, are respectively the start, wait-for, maintain and
end timed constraints, and f, is the continue-on-failure flag associated to
the node n.

* ng € N is the main (or start) node of the plan

Plan Semantics
Nodes are executed sequentially. For every node, execution proceeds through
the following steps :

(i) Wait until the start condition is satisfied; if the current time passes the
end of the start condition, the node times out and this is a node failure.

(ii) The execution of a task proceeds by invoking the corresponding action.
The action takes exactly the time specified in the :duration attribute.
The action’s status must be fail, if :fail is true or the time conditions are
not met; otherwise, the status must be success. The execution of a block
simply proceeds by executing each of the node in the node-list in order.

(iii) If the time exceeds the end condition, the node fails.

On a node failure occuring in a sequence, the value of the enclosing block
node’s continue-on-failure flag is checked. If true, execution proceeds to the
next node in the sequence. If false, the node failure is propagated to the block
enclosing the node and so on. If the node failure passes out to the top level
block of the plan, the execution is aborted.

We present now the semantics of nodes and plans in terms of timed au-
tomata. The semantics is constructive in the sense that, automata can be ef-
fectively constructed, depending on syntactical description of the nodes. The
semantics is also compositional in the sense that, the semantics of the plan is
obtained directly by composing of timed automata associated to nodes.

27

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

abort fail
?beging, /Tpn =0
) ——Y——— —[aftere,] (ready)
?abort, ' Fail,,
i [sn] A [wn] ?abort, —[aftere,] V —[imy]
execute -
i lay,
abort : fail ‘
] |]
)| e)
ready }
—
abort) fail)
execute ?abort,, before 1. —[afteren] V 9mn]
\fail,
!abortni ' . I fail,
lbeginng,
?abort,, — —len] ?abort,, w@
[en] end,| | ?faily,
lend,,
{ } before ni+)

Fig. 3. Timed automaton for the common part (left), for the task specific part
(right, up) and the pattern for the block specific part (right, down).

Let us first introduce some notations for some given plan P = (N, 4§, A\, ng).
The set of actions Xp contains the set of synchronisation actions begin,,,
abort,, fail,, end, defined for all nodes n, and the set of elementary actions
a,, defined for task nodes n of the plan P.

The set of clocks Xp = {x,, | n € N} contains one clock z,, for each node
n of the plan. This clock z, is set to 0 when the execution of the node n
begins. If ¢, = [, u] is some constraint of the node n, we will note with [e¢,]
the timed guard (I < z, Az, < u). We note also with afterc the constraint
[—00, u] where the lower bound of ¢ has been removed.

To each node n of P we associate a timed automaton over clocks Xp and
actions X p. The automaton encodes the sequential behaviour described by
the node execution algorithm. Note that since the execution algorithm is
deterministic, the timed automata obtained are deterministic.

Definition 4.2 (node semantics) Figure 3 illustrates the translation. Let
n be a node with 6(n) = ny..ng and AX(n) = (an, (Sn, Wn, My, €n), fn). The
semantics of the node n s described by the timed automaton for the common
part, shown in the left of the figure. The specific part is filled according to node
attributes as follows. For a task node (6(n) = €), as shown in the top-right
part of the figure. For a block node with continue on failure (f, = true), as
shown in the bottom-right part of the figure. For a block node without continue
on failure (f, = false), as shown in the bottom-right part of the figure, except
that the transition labeled ? fail,, leads back to the right-most bottom location.
For the sake of simplicity, we represent eager transitions using solid lines and

28

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

TA node0 TA nodel TA node2
Tbegin, begin Tbegin
xg := 0 [:170 > 30] Tl = (])i xo 1= (i 1[‘;2 ZZ 30]
aily
_— > 04>
[1 <zo <B| 7aborty O [1 <z <] Taborty
\ = =
I I [z2 > 30]
b b 'fails
—_— —_—
Taborty O ?aborts O
[[
I I [x2 > 30]
é) b | faila
lezecut ‘1 ?abort; !execute? Taborty
[[
| faily | faily
lsuccess ?aborty : ?aborts :
1 <zp <30
'[xg > 38! ; lsuccess
O laborty! fai OO
?successy | 7 faily
[zo > 30] The plar
| failp O node0
Ibegin) start (1,5)
2o > 30] end(1,30)
!abortglfailgo
?successp| ? faila
[zo > 30]
O nodel node2
[1< zo < 3] start (1,5) start (+1,45)
Tsuccess end(+1,430)

Fig. 4. A plan and its translation to a network of three timed automata.

lazy transitions using dashed lines. ! and ? denote communication via CSP-like
message passing.
Finally, the semantics of the entire plan P is given by the parallel com-

position i.e, the network of timed automata defined for all of its nodes. Note
that, the product automaton is deterministic too.

Definition 4.3 (plan semantics) Let P = (N,d,\,ng) be a plan, Xp the
set of clocks and Xp the set of actions defined by P. Let A, be the timed
automata over Xp and Yp associated to nodes n; € N. The semantics of the
plan P is given by the network Ay, ||An,||...||An, -

An example of a plan and the corresponding timed automata are given in
Figure 4.

5 (Generating observers from timed-automata

In this section, we define two kinds of observers for a TA specification A. They
are distinguished by their observation capabilities with respect to time. The
first, called analog observers (the terminology is taken from [16]) can observe

29

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

a set of observable actions and the exact time-stamps of these actions. Thus,
these observers can be thought of possessing a “perfect”, real-time clock, which
they can consult immediately upon observing an action. The second, called
digital observers (or periodic-sampling observers) can also observe a set of
observable actions, but they only have access to a digital clock, that is, a
counter that ticks with a given period 0. Thus, when observing an action
a which occurred at real-time ¢, the digital observer only knows the current
value of its periodic clock, i.e., [£].

The objective of the observers is to determine whether a given trace (gen-
erated by a system under observation) could be possibly generated by the
specification A. If so, then the system under observation passes this test,
otherwise, it fails.

Analog and digital observer definition
Let us formalize the above notions. Let A be a TA over X and let ¥, C X
be a set of observable actions.

An analog observer for A with respect to X, is a total function

(4) O:RT(Xus) — {0,1}
such that
(5) Vp e RT(Zss) - (O(p) =l pe ObsTraces(A,Zobs)>.

Thus, an analog observer performs nothing else but a membership test: does
the observation p belong to the language of A, i.e., p € ObsTraces(A, X ,ps).
Notice that A has no acceptance conditions in our setting, thus, its language
is prefix-closed. Also notice that observers are required to be determinis-
tic, that is, to provide the same answer each time they are given the same
observation. Thus, analog observers can be seen as deterministic machines
accepting the language of A. It follows, from the fact that timed automata
are non-determinizable in general [2], that an analog observer cannot always
be represented as a timed automaton. Moreover, checking whether this is the
case for a particular automaton is undecidable [26].

A digital observer (or periodic-sampling observer) for A with respect to
s and 6 > 0 is a total function

(6) D:DT(Su) — {0,1}
such that
(7) VpeDT(Zus) - (D(p) = 1< p € DigTraces(A, Eob375)>-

Automatic observer generation using the state-estimation technique

We next show how, given a timed automaton A, analog and digital ob-

servers can be automatically generated for A. The method relies on the state-

estimation technique proposed in [25], where it was applied to fault detection.
State estimation consists in computing, given an observation, the set of

30

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

states of A which “match” this observation, that is, the set of all possible
states which can be reached by some trace which yields the observed trace.
If the state estimate remains non-empty all along the observation, then the
latter can indeed be generated by A, since there exists at least one trace of
A matching the observation. If, however, the state estimate becomes empty;,
then the observation cannot be generated by A.

State estimation is not more expensive than reachability analysis. In fact,
in some cases it is cheaper.! As shown in [25,19], state estimates can be
represented using standard data structures for TA, such as DBMs [12], and can
be computed using various versions of symbolic successor operators, depending
on the desired estimator (analog or digital).

Generating analog observers
Consider a timed automaton A over X and a set of observable actions X, C 2.

The analog state-estimator for A with respect to X, is the total function
SE, : RT(Zgp5) — 2Rea<h(4) " defined as follows:

(8) SE.(p)={s|3c € RT(X) .55 ZasAPg, (0)=p}

SE.(p) contains all states where A can possibly be after executing a sequence
which yields the analog observation p.
Now, define

1, if SE,(p) # 0
0, otherwise

It follows easily from the definitions that O defined as above is a valid analog
observer for A w.r.t. X p,.

We proceed to discuss how SE, can be computed. Let S be a set of states
of A. Let a € ¥ and t € R. Define the following operators:

(10) asucc(S,a) ={s'|Is € S .5 5, 5}

(11) tsucc(S,t) = {s'|Is € S .3p € RT(Z\ Zops) - time(p) =t A s 24 5}
asucc(S, a) contains all states which can be reached by some state in S after
performing action a. tsucc(S,t) contains all states which can be reached by
some state in S via a sequence p which contains no observable actions and
takes exactly t time units.

The following proposition shows how SE,(p) can be computed recursively
on p.

Proposition 5.1
(12) SE.(€) =tsucc({s'},0)

1 The worst-case complexity of the membership problem in timed automata is studied

in [3]. There, it is shown that for automata without epsilon-transitions (i.e., fully ob-
servable), the problem is NP-complete whereas for automata with epsilon-transitions the
problem is PSPACE-complete (i.e., as hard as reachability).

31

BENSALEM, BozGA, KRICHEN AND TRIPAKIS
(13) SE.(p- (a,t)) =asucc(tsucc(SE,(p),t — time(p)), a)

Generating digital observers

Consider a timed automaton A over X and a set of observable actions X, C >.
Let 6 € R, 6 > 0. The digital state-estimator for A with respect to ¥, and o
is the total function SEq : DT(X,ps) — 2Re2h(A) defined as follows:

(14) SEq4(p) = {s | 3o € RT(X) . s5 Za s A [Py, ()]s = p}.
SE4(p) contains all states where A can possibly be after executing a sequence

which yields the digital observation p.
Now, define

1, if SEq(p) # 0

0, otherwise

(15) D(p) =

It follows easily from the definitions that D defined as above is a valid digital
observer for A w.r.t. X, and ¢.

tick! tick!
=10 9<z <11
eager de yable
z:=0 0
perfectly with skew
periodic

Fig. 5. Two possible Tick automata.

We proceed to discuss how D can be computed. We first form the product
of A with a Tick automaton like the one shown on the left of Figure 5. This
automaton models the digital clock of the observer, assumed to be perfectly
periodic with period 6 = 10. Other Tick automata can also be used, like
the one on the right of the figure, to model phenomena such as clock skew
or drift. (Notice that, in these cases, the definition of DigTraces must be
modified.) Let the product automaton be Ay = Al Tick. We assume that
tick is a new observable event, not in X. Let S be a set of states of Agck.
Define the following operator:

(16) usucc(S) ={s'|Is € S.Ip € RT(Z\ Zops) - 5 Lo, '}

usucc(S) contains all states which can be reached by some state in S via a
sequence p which contains no observable actions. Notice that, by construction
of Aick, the duration of p is bounded: since tick is observable and has to occur
after at most 1 time unit, time(p) < 1.

For a € ¥ U {tick}, define:

(17) dsucc(S, a) = asucc(usucc(S), a).

dsucc”(-,a), for k € N, denotes the application of dsucc(-,a) k times. That is,
dsucc’(-, a) is the 1dent1ty function and dsucc®*!(-, a) = dsucc(dsucc®(-, a), a).

32

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

The following proposition shows how SE4(p) can be computed recursively
on p.

Proposition 5.2
(18) SEa(e) = {s5"}
(19) SE4(p - (a, k)) = dsucc(dsucc”(SE4(p), tick), a)

Implementation

We have implemented a prototype observer generation tool, called TTG, on
top of the IF environment [10]. The IF modeling language allows to specify
systems consisting of many processes communicating through message passing
or shared variables and includes features such as hierarchy, priorities, dynamic
creation and complex data types. The IF tool-suite includes a variety of tools
for simulation, model checking and test generation. TTG is written in C++
and uses the basic libraries of IF for parsing and symbolic reachability of timed
automata with deadlines.

TTG takes as main input the specification automaton, written in IF lan-
guage, and generates an off-line observer. The observer takes as input a trace
and the set of unobservable actions of the original IF specification. The ob-
server can function either as an analog observer (default) or as a digital ob-
server (-d option).

6 Case Study

Our case study is the Mars rover controller K9, and in particular its executive
subsystem, developed at NASA Ames. It is an experimental platform for
autonomous wheeled vehicles called rovers, targeted for the exploration of the
Martian surface. K9 is specifically used to test out new autonomy software,
such as the Rover Executive. The Rover Executive provides a flexible means of
commanding a rover through plans that control the movement, experimental
apparatus, and other resources of the Rover - also taking into account the
possibiliy of failure of command actions.

The Rover executive is a software prototype written in C++ by researchers
at NASA Ames. It is a multi-threaded program that consists of approximately
35,000 lines of C++ code, of which 9600 lines of code are related to actual
functionality. The C++ code was manually translated into Java and C to
experiment with tools using three technologies: static analysis, model checking
and runtime analysis [11,4].

System Description
The Rover executive is made up of :

* A main coordinating component named Executive. It provides the main
control over how the plan is executed. Executive waits for a plan to be
available, and signals at the end of the plan execution. So, the PlanWatcher

33

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

ExecTimeChecker

ExecTimer []ExecTimerWaiter

processWakeupTimes()

PlanWatcher
\ ExecCondChecker

Executive ~

executePlan() Internal
. . |~ executeCurrentNode() e
ACtIOn Executlon executeTaskAction()

internalRunAction() e l

internalDoAction()] -
doAction(), DBMonitor

stopAction(),

abortAction() Datab

atabase
(System state)

Fig. 6. The K9 Rover Architecture.

signals when a plan is ready, and waits for end of execution to send a new
plan.

The component for monitoring the state condition ExecCondChecker consists
of two threads, the database monitor DBMonitor just keeps watching for
changes in the database and the thread Internal decides what needs to be
done about it.

ExecTimerChecker is the component for monitoring temporal conditions. It
consists of two threads ExecTimer and ExecTimerWaiter. Both are respec-
tively very similar to DBMonitor and Internal

The ActionExecution thread is responsible for issuing the commands to the
Rover. It consists of a list of methods internalDoAction, doAction, stopAction,
and abortAction. ActionExecution runs the internalDoAction method, the
other methods are just called by the Executive on its own thread by simple
calls.

Database simply receives calls to its methods. All accesses to the database
through its methods are controlled by a lock.

Synchronization between these threads is performed through mutex and con-

ditions variables.

Results

Due to intellectual property restrictions, we did not have access to the execu-
tion platform of the K9 Rover. However, NASA provided us with a set of one
hundred plans and traces, generated by the K9 Rover execution platform. We
applied our method, using the plan-to-IF translator to obtain IF models for
each plan, and TTG to generate an observer for each IF model of a plan. The

observer was then used to check the traces.

One of the plans is shown in Figure 4. Time units in the plan are in seconds.

34

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

start node0 922
start nodel 1932
success nodel 1932
start node2 2942
success node2 2942
success node0 2942

Fig. 7. A trace corresponding to the plan of Figure 4.

A trace generated by the execution platform with input this plan is shown in
Figure 7 (times in the trace are in milliseconds). The trace says that node 0
starts at time 922, node 1 starts at time 1932 and completes successfully at
the same time, and so on. This trace does not conform to the specification,
because the latter requires that node 2 finishes at least 1 second after it starts
(fifth line of the block of node 2 in the plan). TTG takes a few seconds to
generate the observer (this is a C++ code generation process, compilation and
linking with IF libraries). The observer needs less than a second to qualify
this claim as non-conforming. In general, all traces were checked in a matter
of seconds.

7 Conclusions and future work

We have proposed a methodology for testing conformance of an important
class of real-time applications in an automatic way. The class includes all
applications for which a specification is available and can be translated into a
network of timed automata. In particular, the class includes robotic applica-
tions where specifications are considered to be the plans describing the robot
mission. Such plans can be automatically translated to timed automata [1].

The method relies on the automatic generation of an observer from the
specification, on the one hand, and on the instrumentation of the system to be
tested, on the other hand. The testing process consists in feeding the traces
generated by the instrumented system to the observer, which is a testing
device, used to check conformance of a trace to the specification. We have
validated the approach on the NASA K9 Rover case study.

Regarding future work, we plan to study the instrumentation and trace
generation problems. As mentioned above, instrumentation should be possible
to automate, by identifying a mapping between execution platform events and
specification events, and automatically scanning the code, adding event /time-
stamp exporting commands to the identified platform events. Trace generation
has a lot of similarities to test-case generation, since the system under test
must be run a number of times, with different inputs, to obtain a set of
traces. Input coverage and other techniques can be employed here to obtain
an adequate set of traces. In fact, it is an interesting question how to define
coverage in the case where the inputs are plans.

We also plan to study the representation of observers as finite automata

35

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

(timed or untimed). This is not always possible, because timed automata are
non-determinizable in general [2]. Moreover, checking whether a particular
TA is determinizable and determinizing it is algorithmically impossible in
general [26]. Identifying classes of TA (e.g. those generated from plans) for
which the above problems are solvable is a possible step in this direction.

Finally, we envisage extending our approach to other high-level specifica-
tion languages and experimenting with more case studies.

Acknowledgments

We would like to thank Klaus Havelund and Rich Washington from NASA
for their help with the instrumentation of the K9 Rover application. Also,
Dimitra Giannakopoulou from NASA for explaining the application.

References

[1] A. Akhavan, S. Bensalem, M. Bozga, and E. Orfanidou. Experiment on
verification of a planetary rover controller, 2003. Submitted.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

[3] R. Alur, R.P. Kurshan, and M. Viswanathan. Membership questions for timed
and hybrid automata. In RTSS5’98, 1998.

[4] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
G. Rosu, and W. Visser. Experiments with test case generation and

runtime analysis. In 10th International Workshop on Abstract State Machines
(ASM’03), March 2003.

[5] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Eagle does Space Efficient
LTL Monitoring. Submitted for publication, October 2003.

[6] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. FEagle Monitors by
Collecting Facts and Generating Obligations. Submitted for publication,
October 2003.

[7] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. In Proceedings of Fifth International Conference on Verification,

Model Checking and Abstract Interpretation, January 2004 — to appear in
LNCS, August 2003.

[8] S. Bensalem and K. Havelund. Deadlock Analysis of Multi-threaded Java
Programs. Submitted for publication, December 2003.

[9] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In
Compositionality, volume 1536 of LNCS. Springer, 1998.

[10] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier.
IF: a validation environment for timed asynchronous systems. In E.A. Emerson

36

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

and A.P. Sistla, editors, Proc. CAV’00, volume 1855 of LNCS, pages 543-547.
Springer Verlag, 2000.

[11] G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry,
C. Pasareanu, A. Venet, and W. Visser. Experimental evaluation of v&v tools
on martian rover software. In SEI Software Model Checking Workshop, 2003.

[12] D.L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Automatic Verification Methods for Finite State
Systems, Lecture Notes in Computer Science 407, pages 197-212. Springer—
Verlag, 1989.

[13] D. Drunsinsky. The temporal tover and the ATG rover. volume 1885 of LNCS,
pages 323-330, 2000.

[14] R. Goldman. Model-based planning and real-time execution in the CIRCA
framework. In AI Planning and Scheduling (AIPS’02), 2002.

[15] K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer.
In K. Havelund and G. Rosu, editors, Proceedings of the First International
Workshop on Runtime Verification (RV’01), volume 55 of Electronic Notes in
Theoretical Computer Science, pages 97-114, Paris, France, July 2001. Elsevier
Science. Extended version to appear in the journal Formal Methods in System
Design.

[16] T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
ICALP’92, LNCS 623, 1992.

[17] F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A high level supervision
and control language for autonomous mobile robots. In IEEFE Intl. Conf. on
Robotics and Automation, 1996.

[18] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti. The Saphira
architecture: A design for autonomy. Journal of experimental € theoretical
artificial intelligence, 9(1):215-235, 1997.

[19] M. Krichen and S. Tripakis. Black-box conformance testing for real-time
systems, 2003. Submitted.

[20] D.M. Lyons. Representing and analyzing action plans as networks of concurrent
processes. IEEE Transactions on Robotics and Automation, 1993.

[21] N. Muscettola, G.A. Dorais, C. Fry, R. Levinson, and C. Plaunt. IDEA:
Planning at the core of autonomous reactive agents. In Al Planning and

Scheduling (AIPS’02), 2002.

[22] J. Peterson, G. Hager, and P. Hudak. A language for declarative robotic
programming. In IEEE Conf. on Robotics and Automation, 1999.

[23] J. Sifakis and S. Yovine. Compositional specification of timed systems. In 13th
Annual Symposium on Theoretical Aspects of Computer Science, STACS’96,
pages 347-359, Grenoble, France, February 1996. Lecture Notes in Computer
Science 1046, Spinger-Verlag.

37

BENSALEM, BozGA, KRICHEN AND TRIPAKIS

[24] R. Simmons and D. Apfelbaum. A task description language for robot control.
In Intelligent Robotics and Systems, 1998.

[25] S. Tripakis. Fault diagnosis for timed automata. In Formal Techniques in
Real Time and Fault Tolerant Systems (FTRTFT’02), volume 2469 of LNCS.
Springer, 2002.

[26] S. Tripakis. Folk theorems on the determinization and minimization of
timed automata. In Formal Modeling and Analysis of Timed Systems
(FORMATS’03), LNCS. Springer, 2003.

[27] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4), 1997.

38

	Introduction
	Methodology
	Preliminaries
	Generating timed-automata from plans
	Generating observers from timed-automata
	Case Study
	Conclusions and future work
	References

